Mounting instructions

# Torque Flange







| Saf | ety ins     | tructions                                            | 5  |  |  |  |
|-----|-------------|------------------------------------------------------|----|--|--|--|
| 1   | Scop        | e of supply                                          | 9  |  |  |  |
| 2   | Application |                                                      |    |  |  |  |
| 3   | Struc       | ture and mode of operation                           | 10 |  |  |  |
| 4   | Mech        | anical installation                                  |    |  |  |  |
|     | 4.1         | Conditions on site                                   |    |  |  |  |
|     | 4.2         | Mounting position                                    |    |  |  |  |
|     | 4.3         | Mounting sequence                                    | 12 |  |  |  |
|     | 4.4         | Preparing for the rotor mounting                     | 15 |  |  |  |
|     | 4.5         | Mounting the rotor                                   | 19 |  |  |  |
|     | 4.6         | Installing the stator                                | 21 |  |  |  |
|     | 4.7         | Installing the clamp fixture                         | 23 |  |  |  |
|     | 4.8         | Aligning the stator (speed measuring system)         | 24 |  |  |  |
| 5   | Elect       | rical connection                                     | 26 |  |  |  |
|     | 5.1         | General hints                                        | 26 |  |  |  |
|     | 5.2         | Shielding design                                     |    |  |  |  |
|     | 5.3         | Connector pin assignment Option 3, Code SU2          |    |  |  |  |
|     | 5.4         | Connector pin assignment Option 3, Code PNJ          | 29 |  |  |  |
|     | 5.5         | Supply voltage pin assignment (Option 3, Code SU2)   | 29 |  |  |  |
|     |             | 5.5.1 Supply voltage for self-contained operation    |    |  |  |  |
|     | 5.6         | Supply voltage (Option 3, Code PNJ)                  | 30 |  |  |  |
| 6   | TEDS        | transducer identification (Option 3, Code PNJ)       | 30 |  |  |  |
|     | 6.1         | Hierarchy of user rights                             | 30 |  |  |  |
|     |             | 6.1.1 Standard rights (USR level)                    |    |  |  |  |
|     |             | 6.1.2 Calibration rights (CAL level)                 |    |  |  |  |
|     |             | 6.1.3 Administrator rights (ID level)                |    |  |  |  |
|     | 6.2         | Content of the TEDS memory as defined in IEEE 1451.4 | 31 |  |  |  |
| 7   | Shun        | t signal (Option 3, Code SU2)                        |    |  |  |  |
|     | 7.1         | Shunt signal                                         | 34 |  |  |  |
| 8   | Settir      | ngs (Option 3, Code SU2)                             | 35 |  |  |  |
|     | 8.1         | Torque output signal                                 | 35 |  |  |  |
|     | 8.2         | Setting up the zero point                            | 35 |  |  |  |

|    | 8.3 Function testing 3 |                                                     |   |  |  |  |  |
|----|------------------------|-----------------------------------------------------|---|--|--|--|--|
|    |                        | 8.3.1 Power transmission                            | 6 |  |  |  |  |
|    |                        | 8.3.2 Checking the speed measuring system 3         | 7 |  |  |  |  |
|    | 8.4                    | Speed measuring system 3                            | 8 |  |  |  |  |
|    | 8.5                    | Form of speed output signal 38                      | 8 |  |  |  |  |
|    | 8.6                    | Type of speed output signal 3                       | 8 |  |  |  |  |
| 9  | Load                   | ng capacity                                         | 9 |  |  |  |  |
|    | 9.1                    | Measuring dynamic torque 39                         | 9 |  |  |  |  |
| 10 | Maint                  | enance 4                                            | 0 |  |  |  |  |
| 11 | Spec                   | fications 4                                         | 1 |  |  |  |  |
| 12 | Dime                   | nsions Rotor T10FH rotating; option 2, code L 4     | 8 |  |  |  |  |
| 13 | Dime                   | nsions Rotor T10FH non-rotating; option 2, code N 4 | 9 |  |  |  |  |
| 14 | Moun                   | ting Dimensions                                     | 0 |  |  |  |  |
| 15 | Supp                   | ementary technical information; option 2, code L 5  | 1 |  |  |  |  |
|    | 15.1                   | Output signals 5                                    | 1 |  |  |  |  |
|    |                        | 15.1.1 Output MD for torque (connector 1) 5         | 1 |  |  |  |  |
|    |                        | 15.1.2 Output N for rotation speed (connector 2) 5  | 2 |  |  |  |  |
|    | 15.2                   | Circular run-out values 55                          | 3 |  |  |  |  |
| 16 | Order number           |                                                     |   |  |  |  |  |
| 17 | Acce                   | sories                                              | 5 |  |  |  |  |

# Safety instructions

### Appropriate use

The T10FH Torque Flange may be used for torque-measurement and directly related control and regulation tasks only. Any other use is **not** appropriate.

To ensure safe operation, the transducer may only be used according to the specifications given in this manual. When using the transducer, the legal and safety regulations for the respective application must also be observed. The same applies if accessories are used.

The transducer is not a safety device in accordance with the regulations for appropriate use. For correct and safe operation of these transducers it is essential to ensure technically correct transportation, storage, installation and fitting, and to operate all equipment with care.

This is a Class B EMC product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

### General dangers in the case of non-observance of the safety instructions

The transducer comply with the state of the art and is operationally reliable. If the transducer is used and operated inappropriately by untrained personnel, residual dangers may arise.

Anyone responsible for installing, operating, maintaining or repairing these transducers must be sure to have read and understood the operating manual and in particular the notes on safety.

### **Residual dangers**

A2037-4.0 en

The scope of performance and supply of these transducers covers only part of the torque measurement technology. In addition, those involved in planning, constructing and operating the safety engineering aspects of torque measurement technology must design, produce and take responsibility for such measures in order to minimize potential residual dangers. Prevailing regulations must be complied with at all times. There must be a clear reference to the residual dangers connected with measurement technology.

In this manual, the following symbols are used to refer to residual dangers:

Symbol:



Meaning: Maximum danger level

Warns of an **imminently** dangerous situation in which failure to comply with safety requirements **will result in** death or serious physical injury.



Symbol:

Meaning: Dangerous situation

Warns of a **potentially** dangerous situation in which failure to comply with safety requirements **can result in** death or serious physical injury.

Symbol:



Meaning: P

### Potentially dangerous situation

Warns of a potentially dangerous situation in which failure to comply with safety requirements **could result in** damage to property or some form of physical injury.

Symbols pointing out notes on use and waste disposal as well as useful information:

Symbol:



Means that important information about the product or its handling is being given.

Symbol:



### Meaning: CE mark

The CE mark enables the manufacturer to guarantee that the product complies with the requirements of the relevant EC directives (the declaration of conformity is available at http://www.hbm.com/HBMdoc).

Symbol:



### Meaning: Statutory marking requirements for waste disposal

National and local regulations regarding the protection of the environment and recycling of raw materials require old equipment to be separated from regular domestic waste for disposal.

For more detailed information on disposal, please contact the local authorities or the dealer from whom you purchased the product.

#### **Reconstruction and modifications**

HBM's express consent is required for modifications affecting the transducers' construction and safety. HBM does not take responsibility for damage result-ing from unauthorized modifications.

#### **Qualified personnel**

The transducers may be used by qualified personnel only; the technical data and the special safety regulations must be observed in all cases. When using the transducers, the legal and safety regulations for the respective application must also be observed. The same applies if accessories are used.

Qualified personnel means: personnel familiar with the installation, fitting, start-up and operation of the product, and trained according to their job.

### Prevention of accidents

According to prevailing accident prevention regulations, after fitting the T10FH torque flange a cover must be fitted as follows:

- The cover must not be able rotate.
- The cover shall protect against crushing or cutting and provide protection against parts that might come loose.
- The cover shall be installed at a safe distance from moving parts or shall prevent anyone putting their hand inside.
- The cover shall even be fitted if the moving parts are installed in areas to which persons do not usually have access.

The above regulations may only be disregarded if machine parts are already sufficiently protected owing to the design of the machine or because other precautions have been taken.

### Guarantee

In the event of a claim, the guarantee can only be considered if the torque flanges are returned in its original packing.

# 1 Scope of supply

- Torque flange
- Mounting Instructions
- Test record
- Optional:

Magnetic speed measuring system PTB calibration certificate in accordance with DIN 51 309 or EA-10/14: Class 0.5

# 2 Application

The T10FH torque flange records static and dynamic torque on fixed or rotating shafts and also return RS422 signals with direction of rotation information to determine the speed.

The rotating version (frequency and voltage output) is designed for:

- marine engine test benches
- transmissions
- pump test benches

The non-rotating version (mV/V output signal) is designed for:

- calibration tasks
- torque reference transducers
- torque transfer transducers

Designed to work without bearings and with contactless digital signal transmission, the torque measuring system is maintenance-free.

The torque flange is supplied for nominal (rated) torques of 100 kN·m to 300 kN·m. Depending on the nominal torque, maximum speeds of up to 3 000 min<sup>-1</sup> are permissible.

The T10FH torque flange is reliably protected against electromagnetic interference. It has been tested with regard to EMC according to the relevant European standards, and carries the CE mark.

### **3** Structure and mode of operation

The torque flange (Option 2, code N) consists of two separate parts: the rotor and the stator.

The rotor comprises the measuring body and the signal transmission elements.

Strain gages (SGs) are mounted on the measuring body. The rotor electronics for transmitting the excitation voltage and the measurement signal are located centrally in the flange. The transmitter coils for the noncontact transmission of excitation voltage and measurement signal are located on the measuring body. The signals are sent and received by a separable antenna ring. The antenna ring is mounted on a housing that includes the electronic system for voltage adaptation and signal conditioning.

Connectors for the torque signal, the voltage supply and the speed signal (option) are located on the stator. The antenna ring should be mounted more or less concentrically around the rotor (see chapter 4).

Speed measurement is effected by a magnetic field dependent resistor and a ring gear attached to the rotor.

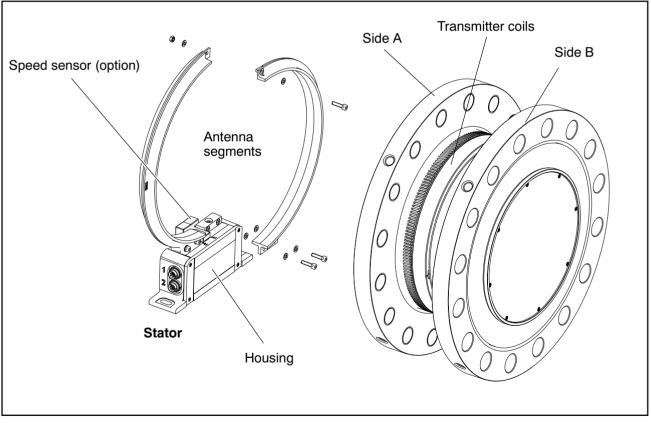



Fig. 3.1: Mechanical construction, exploded view (rotating version)

# 4 Mechanical installation



Handle the torque flange carefully. The transducer might suffer permanent damage from mechanical impact (e.g. dropping), chemical effects (e.g. acids, solvents) or thermal effects (e.g. hot air, steam).

With alternating loads, you should cement the rotor connectionscrews into the mating thread with a screw locking device (medium strength) to exclude prestressing loss due to screw slackening.

An appropriate shaft flange enables the T10FH torque flange to be mounted directly. It is also possible to directly mount a joint shaft or relevant compensating elements on the opposite flange (using an intermediate flange when required). Under no circumstances must the permissible limits specified for bending moments, lateral and longitudinal forces be exceeded. Due to the torque flange's high torsional stiffness, dynamic shaft train changes are kept to a minimum.



Check the effect on speeds and natural torsional oscillations critical to bending, to prevent the transducer being overloaded by increases in resonance.



Even if the unit is installed correctly, the zero point adjustment made at the factory can shift by approx.  $\pm 150$  Hz. If this value is exceeded, we advise you to check the mounting conditions. If the residual zero offset when the unit is removed is greater than  $\pm 50$  Hz, please send the transducer back to the Darmstadt factory for testing.

For correct operation, do in any case observe the mounting dimensions (see page 50).

# 4.1 Conditions on site

The T10FH torque flange is protected to IP54 according to EN 60529. Protect the transducer from coarse dirt, dust, oil, solvents and moisture. During operation, the prevailing safety regulations for the security of personnel must be observed (see "Safety Instructions").

There is wide ranging compensation for the effects of temperature on the output and zero signals of the T10FH torque flange (see specifications on page 41). This compensation is carried out at static temperatures. This guarantees that the circumstances can be reproduced and the properties of the transducer can be reconstructed at any time.

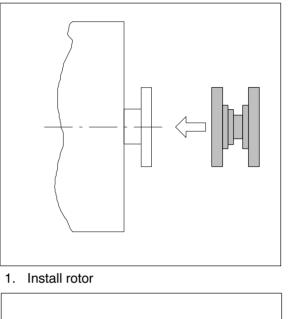
If there are no static temperature ratios, for example, because of the temperature differences between flange A and flange B, the values given in the specifications can be exceeded. Then for accurate measurements, you must ensure static temperature ratios by cooling or heating, depending on the application. As an alternative, check thermal decoupling, by means of heat radiating elements such as multiple disc couplings.

# 4.2 Mounting position

The transducer can be mounted in any position. With clockwise torque, the output frequency is 10...15 kHz (Option 3, Code SU2). In conjunction with HBM amplifiers or when using the voltage output, a positive output signal (0 V to +10 V) is present.

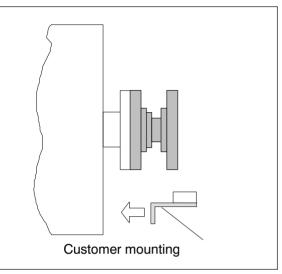
With counterclockwise torque, the output frequency is 5 kHz to 10 kHz.

In the case of the speed measuring system, an arrow is attached to the head of the sensor to clearly define the direction of rotation. When the transducer rotates in the direction of the arrow, a positive speed signal is output.

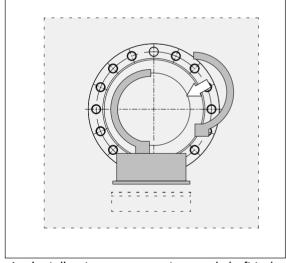

With the non-rotating version, there is a positive output signal in mV/V for clockwise torque.

# 4.3 Mounting sequence

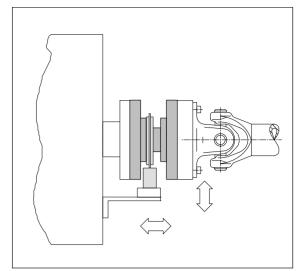
As the diameter of the antenna ring is less than the flange diameter of the rotor, the antenna ring must be dismantled for mounting. If access to the rotor in its installed state is difficult, we recommend mounting the antenna ring beforehand.



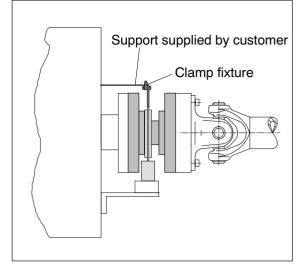

When installing the rotor, make sure that you do not damage the stator. It is essential in this case to comply with the notes on assembling the antenna segments (see "Installing the stator", page 21).







3. Remove one antenna segment




2. Install stator mounting



4. Install antenna segment around shaft train



5. Align stator and finish installation



6. Install clamp fixture

# 4.4 Preparing for the rotor mounting



The rotor is heavy (as much as 148 kg, depending on the measuring range)! Use a crane or other suitable lifting equipment to lift it out of its packaging and install it.

When working with the crane, be sure to meet relevant safety requirements and wear safety boots.

1. Remove the top layer of foam packaging.



Fig. 4.1: T10FH packaging

2. Fasten two equal-length ropes of sufficient bearing strength to the eyebolts (each of the two ropes must be able to bear the full weight of the rotor) and hoist the rotor out of its packaging with the crane (see Fig. 4.2).

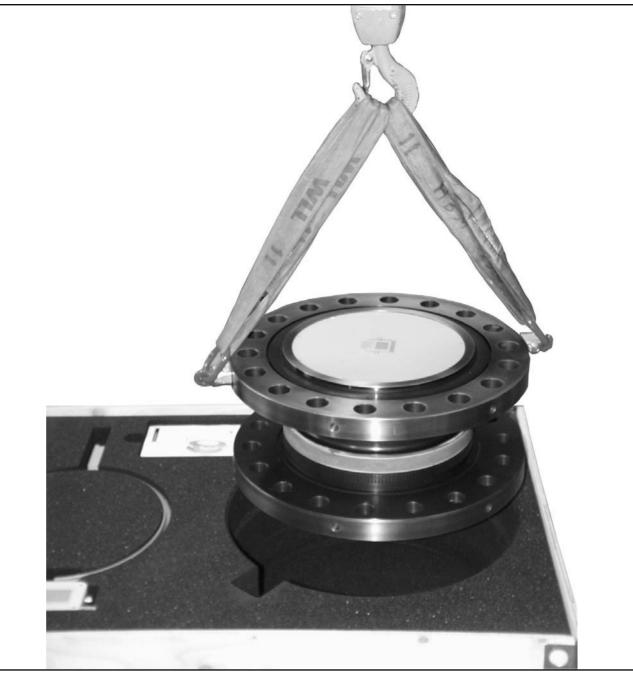



Fig. 4.2: Hoist the rotor out of its packaging

- 3. Place the rotor onto a clean and stable base.
- 4. Remove one of the eyebolts.
- 5. Carefully lift the rotor until it hangs freely.
- 6. Carefully tilt the rotor by lowering it over the flange edge until it rests horizontally on both outer flange surfaces (see Fig. 4.3).



# CAUTION

Crush hazard. Keep your hands and feet a safe distance away from the rotor.



Fig. 4.3: Tilt rotor

- 7. Secure the rotor with wedges to stop it rolling away.
- 8. Screw the second eyebolt back into the tapped holes in the outer flange surface.
- 9. Fasten the rotor to the hook of the crane with two equal-length ropes. The rotor is now prepared for horizontal installation (see Fig. 4.4).



Fig. 4.4: Fastening for horizontal installation



You must remove the eyebolts after mounting! Keep them safe for later use.

# 4.5 Mounting the rotor



In general, the rotor identification plate is no longer visible after installation. This is why we include with the rotor additional stickers with the important ratings, which you can attach to the stator or any other relevant test-bench components. You can then refer to them whenever there is anything you wish to know, such as the shunt signal. To explicitly assign the data, an identification number is attached on the rotor where it can be seen from outside (see Fig. 4.5).

1. Prior to installation, clean the measurement flange's and counter flanges' plane surfaces. For safe torque transfer, the surfaces must be clean and free from grease. Use a piece of cloth or paper soaked in solvent. When cleaning, make sure that you do not damage the transmitter coils.



Fig. 4.5: Screwed rotor joint

2. For the screwed rotor joint, use DIN 933 hexagonal screws of property class 12.9 of an appropriate length (depending on the connection geometry)



With alternating load: Use a screw locking device (e.g. LOCTITE no. 242) to cement the screws into the mating thread to exclude prestressing loss due to screw slackening.

- 3. Tighten all screws with the specified tightening torque (Tab. 4.1).
- 4. For further mounting of the shaft train, there are tapped holes on the rotor. Again use screws of property class 12.9 and tighten them crosswise with the prescribed tightening torque, as specified in Tab. 4.1.



# CAUTION

With alternating loads, use a screw locking device to cement the connecting screws into place. Guard against contamination from varnish fragments.

| Measur-<br>ing<br>range<br>(kN·m) | Fastening<br>screws <sup>1)</sup> | Fastening screws<br>Property class | Number of screws per<br>flange | Prescribed<br>tightening torque<br>(N·m) |
|-----------------------------------|-----------------------------------|------------------------------------|--------------------------------|------------------------------------------|
| 100<br>130<br>150                 | M30                               | 12.0                               | 16                             | 2450                                     |
| 200<br>250<br>300                 | M36                               | - 12.9                             | 18                             | 4250                                     |

#### Tab. 4.1: Fastening screws

<sup>1)</sup> DIN 933; black/oiled/ $\mu_{tot}$  = 0.125

NOTE

We recommend that you use a hydraulic screwdriver to tighten the fastening screws!

# 4.6 Installing the stator

On delivery, the stator has already been fitted ready for operation. The antenna segments have to be separated for installation. To stop you modifying the center alignment of the segment rings opposite the base of the stator, we recommend that you separate only one antenna segment from the stator. Depending on the operating conditions, it may be necessary to stabilize the antenna ring with a clamp fixture (included among the components supplied). See page 23.

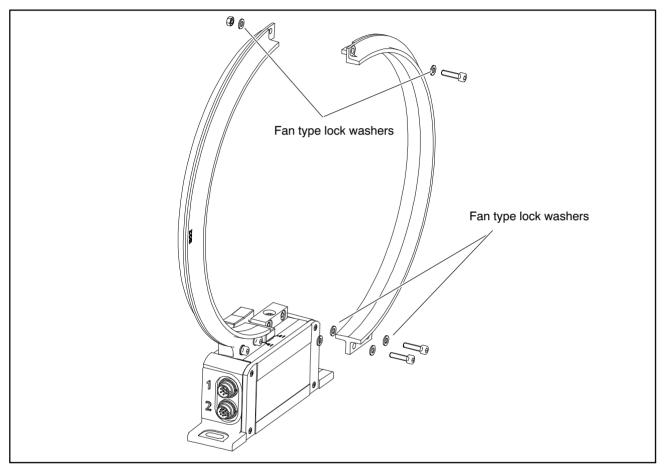
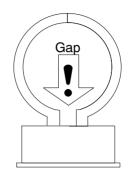




Fig. 4.6: Screw fittings of the antenna segments

- 1. Slacken and remove the screw fittings (M5) on one antenna segment. Make sure that the fantype lock washers are not lost.
- 2. Place the antenna segments around the transmitter on the rotor and close the antenna ring again. Make sure that all the fan-type lock washers in front of **and** behind the antenna segment are present. If necessary, fit the clamp fixture at the same time (see page 23).
- 3. Use an appropriate base plate to install the stator housing in the shaft train so that there is sufficient possibility for horizontal and vertical adjustments. Do not yet fully tighten the screws.

- 4. Align the antenna and rotor so that the antenna encloses the rotor coaxially. Please observe the permissible alignment tolerances stated in the specifications.
- 5. Now fully tighten the screw fitting of the stator housing.
- 6. Make sure that the gap in the lower antenna segment area is free of electrically conductive foreign bodies.





To make sure that they function perfectly, the fan-type lock washers (A5.3-FST DIN 6798 ZN/galvanized) must be replaced after the antenna screw fastening has been loosened three times.

# 4.7 Installing the clamp fixture

Depending on the operating conditions, the antenna ring may be excited to vibrate. This effect is dependent on

- the speed
- the antenna diameter (depends in turn on the measuring range)
- the design of the machine base

To avoid vibrations, a clamp fixture is enclosed with the torque flange enabling the antenna ring to be supported.

### Installation sequence

- 1. Loosen and remove the upper antenna ring screw fitting.
- 2. Fasten the clamp fixture with the enclosed screw fitting as shown in Fig. 4.7. It is essential to use the new fan-type lock washers.
- Clamp a suitable support element (we recommend a threaded rod Ø 3 mm ... 6 mm) between the upper and lower parts of the clamp fixture and tighten the clamping screws.

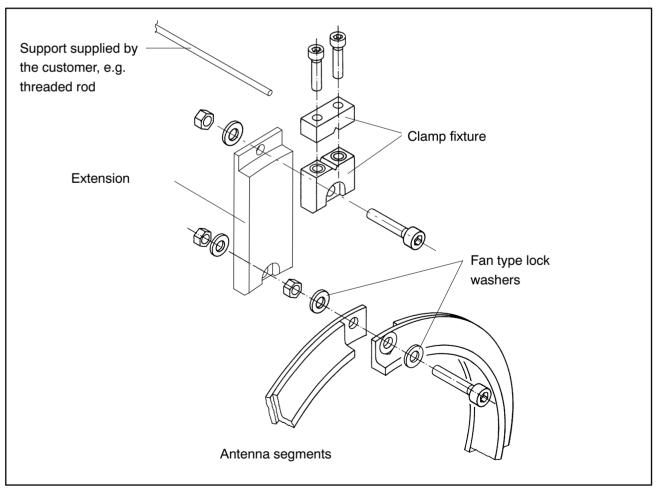



Fig. 4.7: Install the clamp fixture on the antenna ring

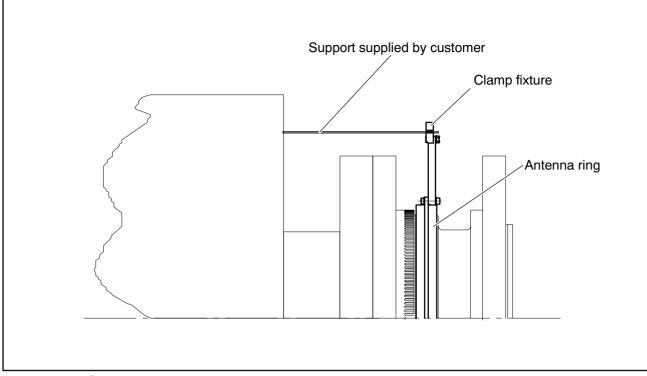



Fig. 4.8: Supporting the antenna ring

# 4.8 Aligning the stator (speed measuring system)

The stator can be mounted in any position (for example, "upside down" installation is possible).

For measuring mode to operate perfectly, the speed sensor must be placed at a defined position to the rotor ring gear.



### NOTE

To fasten the stator, we recommend the use of M6 screws with plain washers (width of oblong hole, 9 mm). This size of screw guarantees the necessary travel for alignment.

### **Axial alignment**

At the factory, the head of the speed measuring system sensor must be adjusted so that when the axial alignment of the stator is exact (antenna ring positioned precisely above the rotor winding carrier), the sensor is in the correct position to the ring gear.

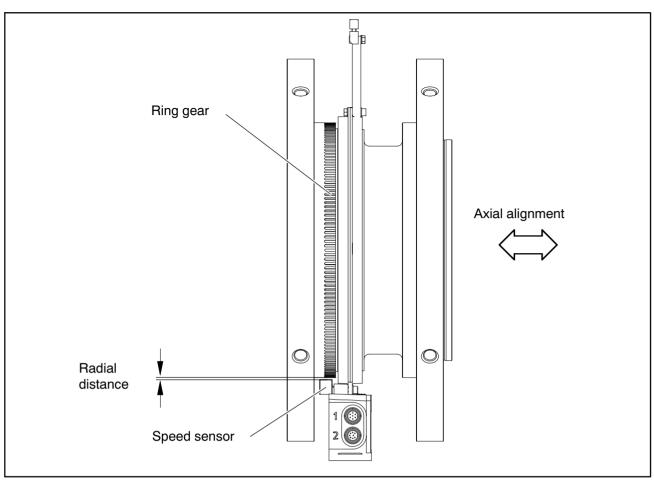



Fig. 4.9: Position of the sensor head to the ring gear

### **Radial alignment**

NOTE

The rotor axis and the axis of the speed sensor must be along a line at right angles to the stator platform. The radial distance is critical for the radial alignment (see Fig. 4.9). The optimum radial distance is 2.5 mm and is achieved when the rotor and the stator are in precise radial alignment.



The mounting conditions are crucial for the pulse tolerance. Preferably try to keep to the specified nominal (rated) distance.

# 5 Electrical connection

# 5.1 General hints

To make the electrical connection between the torque flange and the amplifier, we recommend using shielded, low-capacitance measurement cables from HBM.

With cable extensions, make sure that there is a proper connection with minimum contact resistance and good insulation. All plug connections or swivel nuts nuts must be fully tightened.

Do not route the measurement cables parallel to power lines and control circuits. If this cannot be avoided (in cable pits, for example), maintain a minimum distance of 50 cm and also draw the measurement cable into a steel tube.

Avoid transformers, motors, contactors, thyristor controls and similar strayfield sources.



# CAUTION

Transducer connection cables from HBM with attached connectors are identified in accordance with their intended purpose (Md or n). When cables are shortened, inserted into cable ducts or installed in control cabinets, this identification can get lost or become concealed. If this is the case, it is essential for the cables to be re-labeled!

# 5.2 Shielding design

The cable shielding is connected in accordance with the Greenline concept. This encloses the measurement system (without a rotor) in a Faraday cage. It is important that the shield is laid flat on the housing ground at both ends of the cable. Any electromagnetic interference active here does not affect the measurement signal. Special electronic coding methods are used to protect the purely digital signal transmission between the transmitter head and the rotor from electromagnetic interference.

In the case of interference due to potential differences (compensating currents), operatingvoltage zero and housing ground must be disconnected on the amplifier and a potential equalization line established between the stator housing and the amplifier housing (copper conductor, 10mm<sup>2</sup> wire crosssection).

If potential differences arise between the rotor and the stator on the machine, perhaps due to unchecked leakage, and this causes interference, it can usu-

ally be overcome by connecting the rotor directly to ground, for instance by a wire loop. The stator should be fully grounded in the same way.

### 5.3 Connector pin assignment Option 3, Code SU2

#### Assignment for connector 1:

Supply voltage and frequency output signal.

|              | Connec- Assignment<br>tor |                                                                                    | Color<br>code | Sub-D<br>connec-<br>tor |
|--------------|---------------------------|------------------------------------------------------------------------------------|---------------|-------------------------|
| Binder 723   | Pin                       |                                                                                    |               | Pin                     |
|              | 1                         | Torque measurement signal (frequency output;<br>5 V <sup>1</sup> ); <u>■</u> /0 V) | wh            | 13                      |
|              | 2                         | Supply voltage 0 V;                                                                | bk            | 5                       |
| <b>6</b> ••1 | 3 SL                      | Supply voltage 18 V 30 V                                                           | bu            | 6                       |
|              | 4                         | Torque measurement signal (frequency output; 5 V <sup>1</sup> )/12 V)              | rd            | 12                      |
|              | 5 Measurement signa       | Measurement signal 0 V; 🔟 symmetrical                                              | gу            | 8                       |
| Top view     | 6                         | Shunt signal resolution 5 V30 V and for torque                                     | gn            | 14                      |
|              | 7                         | Shunt signal 0 V; 🗉                                                                | gу            | 8                       |
|              |                           | Shielding connected to enclosure ground                                            |               |                         |

<sup>1)</sup> Factory setting; complementary RS422 signals



Option 3, SU2 torque transducers are only intended for operation with a DC supply voltage (separated extra-low voltage). They must not be connected to older HBM amplifiers with square-wave excitation. This could lead to the destruction of the connection board, or other errors in the amplifiers (the torque flange, on the other hand, is protected and once the proper connections have been re-established, is ready for operation again).

### Assignment for connector 2:

Speed measuring system

| Binder 723 | Connec-<br>tor<br>Pin | Assignment                                                                                   | Color<br>code | SubD<br>connec-<br>tor Pin |
|------------|-----------------------|----------------------------------------------------------------------------------------------|---------------|----------------------------|
|            | 1                     | Speed measurement signal (pulse string, 5 $V^{1)}$ ; 0°)                                     | rd            | 12                         |
|            | 2                     | no function                                                                                  | -             | _                          |
| 5          | 3                     | Speed measurement signal (pulse string, 5 V <sup>1)</sup> ; 90° phase shifted) <sup>2)</sup> | gy            | 15                         |
|            | 4                     | no function                                                                                  | -             | -                          |
|            | 5                     | no function                                                                                  | -             | -                          |
|            | 6                     | Speed measurement signal (pulse string, $5 V^{1}$ ; $0^{\circ}$ )                            | wh            | 13                         |
|            | 7                     | Speed measurement signal (pulse string, 5 V <sup>1)</sup> ; 90°phase shifted) <sup>)</sup>   | gn            | 14                         |
| Top view   | 8                     | Supply voltage zero                                                                          | bk            | 8                          |
|            |                       | Shielding connected to enclosure ground                                                      |               |                            |

<sup>1)</sup> Complementary RS422 signals

### Assignment for connector 3:

Supply voltage and voltage output signal.

| Binder 723                                                                                                  | Connec-<br>tor<br>Pin | Assignment                                              |
|-------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------|
|                                                                                                             | 1                     | Torque/speed measurement signal (voltage output; 0 V L) |
|                                                                                                             | 2                     | Supply voltage 0 V;                                     |
| $\left( \begin{pmatrix} 6^{\bullet} & \bullet 1 \\ \bullet & 7^{\bullet} & \bullet 2 \end{pmatrix} \right)$ | 3                     | Supply voltage 18 V to 30 V DC                          |
|                                                                                                             | 4                     | Torque measurement signal (voltage output; $\pm 10$ V)  |
|                                                                                                             | 5                     | no function                                             |
|                                                                                                             | 6                     | Shunt signal resolution 5 V30 V for torque              |
| Top view                                                                                                    | 7                     | Shunt signal 0 V; 🔟                                     |
|                                                                                                             |                       | Shielding connected to enclosure ground                 |

| Binder 723        | Con-<br>nector | Assignment                              | Color code |
|-------------------|----------------|-----------------------------------------|------------|
|                   | Pin            |                                         |            |
| 6 <sup>•</sup> •1 | 1              | Measurement signal (+) UA               | wh         |
|                   | 2              | Excitation voltage (-) UB and TEDS      | bk         |
| 4 3               | 3              | Excitation voltage (+) UB               | bl         |
|                   | 4              | Measurement signal (-) UA               | rd         |
| Top view          | 5              | no function                             | -          |
|                   | 6              | Sense lead (+)                          | gn         |
|                   | 7              | Sense lead (-) and TEDS                 | gу         |
|                   |                | Shielding connected to enclosure ground |            |

# 5.4 Connector pin assignment Option 3, Code PNJ

# 5.5 Supply voltage pin assignment (Option 3, Code SU2)

The transducer must be operated with a separated extra-low voltage (18...30 volts DC supply voltage), which usually supplies one or more consumers within a test bench. Should the equipment be operated on a dc voltage network<sup>1)</sup>, additional precautions must be taken to discharge excess voltages.

### 5.5.1 Supply voltage for self-contained operation

The information in this section relate to the standalone operation of the T10FH without HBM system solutions.

Supply voltage is electrically isolated from signal outputs and shunt signal inputs.V) up to 50

Connect a separated extra-low voltage of 18 V...30 V to pin 3 (+) and pin 2 (-) of connectors 1 or 3. We recommend that you use HBM cable KAB 8/00-2/2/2 and the relevant Binder sockets, that at nominal (rated) voltage (24 V) can be up to 50 m long and in the nominal voltage range, 20 m long (see Accessories, page 55). If the permissible cable length is exceeded, you can supply the voltage in parallel over two connection cables (connectors 1 and 3). This enables you to double the permissible length. Alternatively an on-site power pack should be installed.

If you feed the supply voltage through an unshielded cable, the cable must be twisted (interference suppression). We also recommend that a ferrite element should be located close to the connector on the cable, and the stator should be grounded.

<sup>&</sup>lt;sup>1)</sup> Distribution system for electrical energy with greater physical expansion (over several test benches, for example) that may possibly also supply consumers with high nominal (rated) currents.



The instant you switch on, a current of up to 2 A may flow and this may switch off power packs with electronic current limiters.

# 5.6 Supply voltage (Option 3, Code PNJ)

A ready-made 6-wire transducer connection cable with free ends can be requested as an accessory.

Extension cables should be shielded and of low capacitance. HBM provides specific cables for this purpose, the 1–KAB0304A–10 (ready–made) and the KAB8/00-2/2/2 (by the meter).

The pin assignment can be found in the table in section 5.4.

For the pin assignments at the amplifier end, please refer to the relevant amplifier documentation.

## 6 TEDS transducer identification (Option 3, Code PNJ)

TEDS stands for "Transducer Electronic Data Sheet". An electronic data sheet can be stored in the transducer as defined in the IEEE1451.4 standard, making it possible for the amplifier to be set up automatically. A suitably equipped amplifier reads out the transducer characteristics (electronic data sheet), translates them into its own settings and measurement can then start.

The digital identification system is available at plug connection PIN 7 to PIN 2. The HBM TEDS Editor is used to store the data. This is included in the HBM "MGCplus Setup Assistant" software. You can use the Editor to manage different user rights, thus protecting the essential transducer data from being overwritten by mistake.

# 6.1 Hierarchy of user rights

### 6.1.1 Standard rights (USR level)

This level concerns rights which the user of the transducer needs in order to change the entries which depend on the conditions of use.

### 6.1.2 Calibration rights (CAL level)

This level concerns the rights needed by a calibration laboratory, for example, if the sensitivity in the TEDS memory is to be changed.

### 6.1.3 Administrator rights (ID level)

Administrator rights in relation to TEDS are intended for the sensor manufacturer.

Different user rights are needed in order to amend the various entries in the templates, and these rights may differ from one entry to the next within a template.

# 6.2 Content of the TEDS memory as defined in IEEE 1451.4

The information in the TEDS memory is organized into areas, which are prestructured to store defined groups of data in table form.

Only the entered values are stored in the TEDS memory itself. The amplifier firmware assigns the interpretation of the respective numerical values. This places a very low demand on the TEDS memory. The memory content is divided into three areas:

### Area 1:

An internationally unique TEDS identification number (cannot be changed).

### Area 2:

The base area (basic TEDS), to the configuration defined in standard IEEE1451.4. The transducer type, the manufacturer and the transducer serial number are contained here.

Example:

TEDS content with the identity number for the T10FH/150 kN · m sensor with serial no. 123456, made in November 2005

| TEDS           |        |
|----------------|--------|
| Manufacturer   | HBM    |
| Model          | T10FH  |
| Version letter |        |
| Version number |        |
| Serial number  | 123456 |

### Area 3:

Data specified by the manufacturer and the user are contained in this area: For the T10FH torque flange, HBM has already described the **Bridge Sensor** and **Channel name** templates.

Additional templates, such as the **Signal Conditioning** template, can also be described by the user.

| Template: Bridge Sensor                 |                     |      |                             |                                                                                                                                |  |
|-----------------------------------------|---------------------|------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter                               | Value <sup>1)</sup> | Unit | Require<br>d user<br>rights | Explanation                                                                                                                    |  |
| Transducer<br>Electrical Signal<br>Type | Bridge<br>Sensor    |      | ID                          |                                                                                                                                |  |
| Minimum Torque                          | 0.000               | N∙m  | CAL                         | The physical measured quantity and<br>unit are defined when the template is<br>created, after which they cannot be<br>changed. |  |
| Maximum Torque                          | 150000              | N∙m  | CAL                         |                                                                                                                                |  |
| Minimum<br>Electrical<br>Value          | 0.0000m             | V/V  | CAL                         | The difference between these values is<br>the sensitivity according to the HBM<br>test certificate or from the calibration.    |  |
| Maximum<br>Electrical Value             | 1.8245m             | V/V  | CAL                         |                                                                                                                                |  |
| Mapping Method                          | Linear              |      |                             | This entry cannot be changed                                                                                                   |  |
| Bridge type                             | Full                |      | ID                          | The bridge type. "Full" for a full bridge.                                                                                     |  |
| Impedance of<br>each bridge<br>element  | 1550+-100           | Ohm  | ID                          | Input resistance according to the HBM data sheet.                                                                              |  |
| Response Time                           | 1.000000u           | S    | ID                          | Of no significance for HBM transducers                                                                                         |  |
| Excitation Level (Nominal)              | 5.0                 | V    | ID                          | Nominal (rated) excitation voltage according to the HBM data sheet                                                             |  |
| Excitation Level<br>(Minimum)           | 2.5                 | V    | ID                          | Lower limit for the operating range of<br>the excitation voltage according to the<br>HBM data sheet                            |  |
| Excitation Level<br>(Maximum)           | 12.0                | V    | ID                          | Upper limit for the operating range of<br>the excitation voltage according to the<br>HBM data sheet                            |  |

<sup>1)</sup> Typical values for an HBM T10FH/150 kN·m torque flange

| Parameter                    | Value <sup>1)</sup> | Unit | Require<br>d user<br>rights | Explanation                                                                                                                                                                                                                                                                                                                                    |
|------------------------------|---------------------|------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration Date             | 1-Nov-2005          | CAL  |                             | Date of the last calibration or creation<br>of the test certificate (if no calibration<br>carried out), or of the storage of the<br>TEDS data (if only nominal (rated)<br>values from the data sheet were used).<br>Format: day-month-year.<br>Abbreviations for the months: Jan, Feb,<br>Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,<br>Nov, Dec. |
| Calibration Initials         | НВМ                 |      | CAL                         | Initials of the calibrator or calibration laboratory concerned.                                                                                                                                                                                                                                                                                |
| Calibration Period<br>(Days) | 730                 | days | CAL                         | Time before recalibration, calculated<br>from the date specified under<br>Calibration Date.                                                                                                                                                                                                                                                    |
| Measurement<br>location ID   | 0                   |      | USR                         | Identification number for the measuring<br>point.<br>Can be assigned according to the<br>application. Possible values: a number<br>from 0 to 2047. If that is not enough,<br>the HBM Channel Comment template<br>can also be used<br>for this purpose.                                                                                         |

<sup>1)</sup> Typical values for an HBM T10FH/150 kN  $\cdot$  m torque flange

#### Template: HBM Channel Name

Channel name

T10FH/150 kNm

When the manufacturer creates the Bridge Sensor template,

the physical measured quantity and the physical unit are defined.

The available unit for the particular measured quantity is specified in the IEEE Standard. For the measured quantity of torque, the unit is " $N \cdot m$ ".

Also in the template, the choice has to be made between "Full precision",

"mV/V" and "uV/V" for the accuracy of the characteristic curve of the transducer mapped in TEDS.

The factory setting is "Full Precision", in order to be able to use full digital resolution. This choice is also recommended to users who program the TEDS memory themselves.

# 7 Shunt signal (Option 3, Code SU2)

The T10FH torque flange delivers a shunt signal that can be switched at the amplifier end for measurement chains with HBM components. The measurement flange generates a shunt signal of about 50% of the nominal (rated) torque. The precise value is specified on the identification plate. Adjust the amplifier output signal to the shunt signal supplied by the connected torque flange to adapt the amplifier to the measurement flange. To obtain stable conditions, the shunt signal should only be activated once the transducer has been warming up for 15 minutes.



### NOTE

The transducer should not be under load when the shunt signal is being measured, as the signal is applied additively.



# CAUTION

To maintain measurement accuracy, the shunt signal should be connected for no more than 5 minutes. A similar period is then needed as a cooling phase before triggering the shunt signal again.

# 7.1 Shunt signal

Applying a separated extra-low voltage of 5 V to pin 6 (+) and 7 ( $\square$ ) on plug 1 or 3 triggers the calibration signal.

The nominal (rated) voltage for triggering the shunt signal is 5V (triggered when U>2.7 V). The trigger voltage is electrically isolated from the supply voltage and the measurement voltage. The maximum permissible voltage is 30 V. When voltages are less than 0.7 V, the torque flange is in measuring mode. Current consumption at nominal (rated) voltage is approx. 2 mA and at maximum voltage is approx. 22 mA.



NOTE

In the case of HBM system solutions, the amplifier triggers the shunt signal.

# 8 Settings (Option 3, Code SU2)

## 8.1 Torque output signal

The factory setting for the frequency output voltage is 5 V (symmetrical, complementary RS422 signals). The frequency signal is on pin 4 opposite pin 1. You can change the output voltage to 12 V (asymmetrical). To do this, change switches S1 and S2 to position 1 (and pin  $1 \rightarrow \blacksquare$ ).

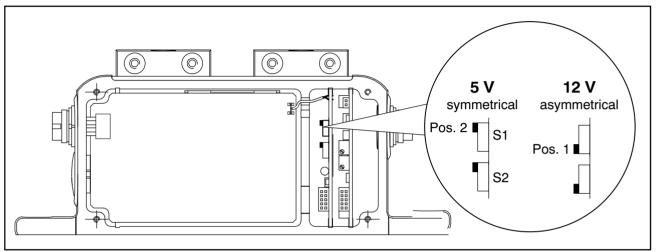



Fig. 8.1: Switch for changing the frequency output voltage

# 8.2 Setting up the zero point

In the case of the torque flange with the voltage output option (SU2), you can access two potentiometers by removing the stator cover. You can use the zero point potentiometer to correct certain zero point deviations. The adjustment range is a minimum of  $\pm 400$  mV at nominal (rated) amplification. The end point potentiometer is used for adjustment at the factory and is capped with varnish so that it cannot be turned unintentionally.



Turning the end point potentiometer changes the factory calibration of the voltage output.

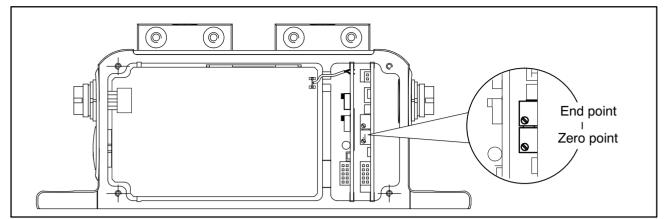



Fig. 8.2: Setting the voltage output zero point

### 8.3 Function testing

#### 8.3.1 Power transmission

If you suspect that the transmission system is not working properly, you can remove the stator cover and test for correct functioning. If the LED is on, the rotor and stator are properly aligned and there is no interference with the transmission of measurement signals. When the shunt signal is triggered, the LED shines more brightly.

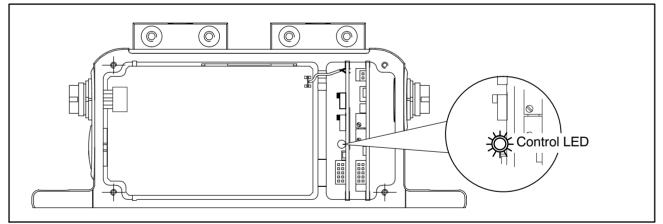



Fig. 8.3: Power transmission function test

### 8.3.2 Checking the speed measuring system

If required, you can check that the speed measuring system is functioning correctly.

- 1. Remove the cover of the stator housing.
- 2. Turn the rotor by at least  $2 \text{ min}^{-1}$ .

If both the control LEDs come on while you are turning the rotor, the speed measuring system is properly aligned and fully operational.

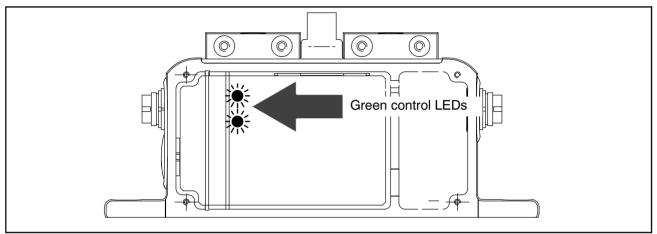



Fig. 8.4: Speed measuring system control LEDs



When closing the cover of the stator housing, make sure that the internal connection cables are positioned in the grooves provided and are not caught up.

### 8.4 Speed measuring system

For optimum functionality, all the DIP-switches (S1-S6) for the speed measuring system must be in the "OFF" position (factory setting).

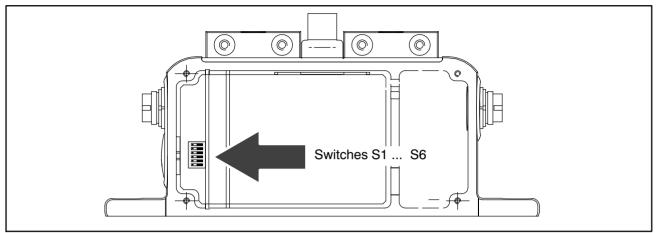



Fig. 8.5: Switches for setting the speed measuring system

### 8.5 Form of speed output signal

In the factory setting, two 90° phase-offset speed signals (5 V symmetrical, complementary RS422 signals) are available at the speed output (connector 2).

### 8.6 Type of speed output signal

You can use switch S7 to change the symmetrical 5 V output signal (factory setting) to an asymmetrical signal of 0 V ... 5 V.

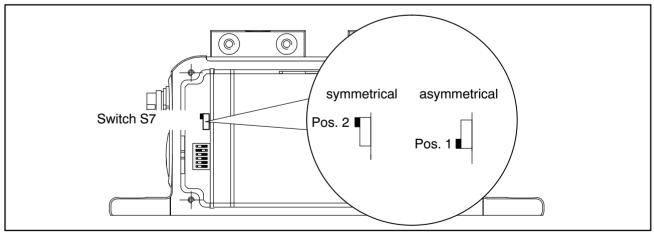



Fig. 8.6: Switch S7; symmetrical/asymmetrical output signal

## 9 Loading capacity

Nominal (rated) torque can be exceeded statically up to the limit torque. If the nominal torque is exceeded, additional irregular loading is not permissible. This includes longitudinal forces, lateral forces and bending moments. Limit values can be found in the "Specifications" section, on page 41.

### 9.1 Measuring dynamic torque

The torque transducer is suitable for measuring static and dynamic torques. The following applies to the measurement of dynamic torque:

- The T10FH calibration performed for static measurements is also valid for dynamic torque measurements.
- The natural frequency  $f_0$  of the mechanical measuring arrangement depends on the moments of inertia  $J_1$  and  $J_2$  of the connected rotating masses and the torsional stiffness of the T10FH.

Use the equation below to approximately determine the natural frequency  $f_{\scriptscriptstyle 0}$  of the mechanical measuring arrangement:

$$f_0 = \frac{1}{2\pi} \cdot \sqrt{c_T \cdot \left(\frac{1}{J_1} + \frac{1}{J_2}\right)} \qquad \qquad \begin{array}{l} f_0 & = \text{ natural frequency in Hz} \\ J_1, J_2 & = \text{ mass moment of inertia in kg·m}^2 \\ c_T & = \text{ torsional stiffness in N·m/rad} \end{array}$$

• The mechanical vibration bandwidth must not exceed the values stated in the specifications (see "Specifications", starting on page 41). The vibration bandwidth must fall within the load range designated by the upper and lower maximum torques. The same also applies to transient resonance points.

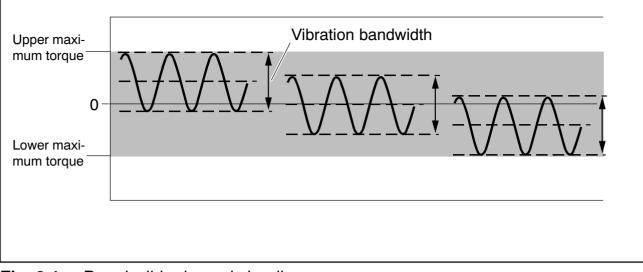



Fig. 9.1: Permissible dynamic loading

### 10 Maintenance

The T10FH torque flange is maintenance free.

# 11 Specifications

| Туре                                                                                                                                             | T10FH (rotating); option 2, code L |                                       |           |                       |           |         |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------|-----------|-----------------------|-----------|---------|--------|
| Accuracy class                                                                                                                                   | 0.1                                |                                       |           |                       |           |         |        |
| Torque measuring system                                                                                                                          |                                    |                                       |           |                       |           |         |        |
| Nominal (rated) torque M <sub>nom</sub>                                                                                                          | kN⋅m                               | n 100 130 150 200 250                 |           |                       |           |         |        |
| for reference only                                                                                                                               | kft-lb                             | 73.8                                  | 95.9      | 110.6                 | 147.5     | 184.4   | 221.3  |
| Nominal (rated) sensitivity (range<br>between torque = zero and nominal<br>(rated) torque)<br>Frequency output                                   | kHz                                | 5                                     |           |                       |           |         |        |
| Voltage output                                                                                                                                   | V                                  |                                       |           | ±                     | 10        |         |        |
| <b>Sensitivity tolerance</b> (deviation of<br>the actual output value at M <sub>nom</sub> of<br>nominal (rated) sensitivity)<br>Frequency output |                                    |                                       |           |                       |           |         |        |
| in conjunction with HBM test report<br>in conjunction with PTB calibration<br>certificate per DIN 51309 or                                       | %                                  |                                       | ±0.25     |                       |           | ±0.4    |        |
| EA-10/14<br>Voltage output                                                                                                                       | %                                  |                                       | ±0.1      |                       |           | ±0.1    |        |
| in conjunction with HBM test report<br>in conjunction with PTB calibration<br>certificate per DIN 51309 or                                       | %                                  | ±0.35                                 |           |                       | ±0.5      |         |        |
| EA-10/14                                                                                                                                         | %                                  |                                       | $\pm 0.2$ |                       |           | ±0.2    |        |
| Output signal at torque = zero<br>Frequency output                                                                                               | kHz                                |                                       |           | 1                     | 0         |         |        |
| Voltage output                                                                                                                                   | V                                  |                                       |           | (                     | )         |         |        |
| Nominal (rated) output signal<br>Frequency output                                                                                                |                                    | ,                                     |           | 1)                    |           |         |        |
| with positive nominal (rated) torque with negative nominal (rated)                                                                               | kHz                                | , , , , , , , , , , , , , , , , , , , | 5 V sym   | ,                     | ,         | 2       | ,      |
| torque<br>Voltage output                                                                                                                         | kHz                                | 5 (±                                  | 5 V sym   | metric) <sup>1)</sup> | / 5 (12 \ | / asymm | etric) |
| with positive nominal (rated) torque with negative nominal (rated)                                                                               | V                                  |                                       |           | +                     | 10        |         |        |
| torque                                                                                                                                           | V                                  |                                       |           |                       | 10        |         |        |
| Load resistance<br>Frequency output                                                                                                              | kΩ                                 |                                       |           | >                     | 2         |         |        |
| Voltage output                                                                                                                                   | kΩ                                 |                                       |           | >                     | 5         |         |        |
| Long-term drift over 48 h<br>Voltage output                                                                                                      | mV                                 | ±3                                    |           |                       |           |         |        |
| Measurement frequency range<br>Voltage output                                                                                                    | Hz                                 | 0 1000 (-3 dB)                        |           |                       |           |         |        |
| Group delay time<br>Frequency output                                                                                                             | ms                                 | 0.15                                  |           |                       |           |         |        |
| Voltage output                                                                                                                                   | ms                                 |                                       |           | 0                     | .9        |         |        |

<sup>1)</sup> RS 422 complementary signals; factory settings

| Туре                                                                                                                                                                |           | T10FH                       | (rotating | g); optio                     | n 2, code  | e L       |           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------|-----------|-------------------------------|------------|-----------|-----------|--|
| Nominal (rated) torque M <sub>nom</sub>                                                                                                                             | kN⋅m      | 100                         | 130       | 150                           | 200        | 250       | 300       |  |
| for reference only                                                                                                                                                  | kft-lb    | 73.8 95.9 110.6 147.5 184.4 |           |                               |            |           |           |  |
| Temperature influence per 10 K<br>in the nominal temperature<br>range<br>Residual ripple<br>related to nominal (rated) sensiti-<br>vity                             | mV        |                             |           |                               |            |           |           |  |
| -                                                                                                                                                                   | 111V      |                             |           | 40 (peak                      | -io-peak)  |           |           |  |
| on the output signal, related to<br>the actual value of signal span<br>Frequency output<br>Voltage output<br>on the zero signal, related to the<br>nom. sensitivity | %<br>%    | ±0.1<br>±0.2                |           |                               |            |           |           |  |
| Frequency output                                                                                                                                                    | %<br>%    |                             |           | -                             | 0.05       |           |           |  |
| Voltage output<br>Max. modulation range <sup>2)</sup>                                                                                                               | 70        |                             |           | ±U                            | .15        |           |           |  |
| Frequency output                                                                                                                                                    | kHz       |                             |           | 4                             | . 16       |           |           |  |
| Voltage output                                                                                                                                                      | V         |                             | -10       | .5 +10                        | .5 (typ. ± | ±11)      |           |  |
| Power supply                                                                                                                                                        |           |                             |           |                               |            | ,         |           |  |
| Nominal (rated) supply voltage<br>(protective low voltage)<br>Current consumption                                                                                   | V<br>(DC) |                             |           | 18.                           | 30         |           |           |  |
| in measuring mode                                                                                                                                                   | А         | < 0.9                       |           |                               |            |           |           |  |
| in start-up mode                                                                                                                                                    | A         |                             |           |                               | 2          |           |           |  |
| Nominal (rated) power<br>consumption                                                                                                                                | W         |                             |           |                               | -          |           |           |  |
| Linearity deviation including<br>hysteresis,<br>related to the nominal (rated) sen-<br>sitivity                                                                     |           |                             |           |                               |            |           |           |  |
| Frequency output                                                                                                                                                    | %         |                             |           |                               | 0.1        |           |           |  |
| Voltage output                                                                                                                                                      | %         |                             |           | ±                             | 0.1        |           |           |  |
| <b>Rel. standard deviation of the</b><br><b>reproducibility,</b> per DIN 1319, by<br>reference to variation of the output<br>signal                                 |           |                             |           |                               |            |           |           |  |
| Frequency output                                                                                                                                                    | %         |                             |           | $\pm 0$                       | .02        |           |           |  |
| Voltage output                                                                                                                                                      | %         |                             |           | ±0                            | .03        |           |           |  |
| Shunt signal                                                                                                                                                        |           | approx.                     | 50 % of   | M <sub>nom</sub> ; va<br>tion |            | to the id | entifica- |  |
| <b>Tolerance of shunt signal</b><br>related to the nominal (rated) sen-<br>sitivity<br>in conjunction with HBM test re-                                             |           |                             |           |                               |            |           |           |  |
| port<br>in conjunction with PTB calibra-                                                                                                                            | %         |                             | ±0.13     |                               |            | ±0.2      |           |  |
| tion certificate per DIN 51309 or EA-10/14                                                                                                                          | %         |                             | $\pm0.05$ |                               |            | $\pm0.05$ |           |  |

<sup>2)</sup> Output signal range with a repeatable relationship between torque and output signal.

| Туре                                           |      | T10FH (rotating); option 2, code L                    |  |  |  |  |
|------------------------------------------------|------|-------------------------------------------------------|--|--|--|--|
| Speed measuring system                         |      |                                                       |  |  |  |  |
| Measuring system                               |      | Magnetic field dependent resistor and gear ring       |  |  |  |  |
| Mechanical increments (pulses                  | Num- |                                                       |  |  |  |  |
| per revolution)                                | ber  | 180                                                   |  |  |  |  |
|                                                |      | 5 symmetric <sup>3)</sup> ;                           |  |  |  |  |
| Output signal                                  | V    | 2 x 180 square wave signals approx. 90° phase shifted |  |  |  |  |
| Minimum speed for sufficient                   |      |                                                       |  |  |  |  |
| pulse stability                                | rpm  | > 2                                                   |  |  |  |  |
| Load resistance                                | kΩ   | > 5                                                   |  |  |  |  |
| Group delay time                               | μs   | < 5                                                   |  |  |  |  |
| Hysteresis of reversing the direc-             |      |                                                       |  |  |  |  |
| tion of rotation                               |      |                                                       |  |  |  |  |
| with relative vibrations between               |      |                                                       |  |  |  |  |
| rotor and stator<br>Torsional rotor vibrations | de-  | 10                                                    |  |  |  |  |
|                                                | gree | 10                                                    |  |  |  |  |
| Max. permissible static eccentri-<br>city      |      |                                                       |  |  |  |  |
| of the rotor (radially) relative to            |      |                                                       |  |  |  |  |
| stator center                                  |      |                                                       |  |  |  |  |
| without speed measuring system                 | mm   | ±2                                                    |  |  |  |  |
| with speed measuring system                    | mm   | ± 1                                                   |  |  |  |  |
| Max. permissible axial displace-               |      |                                                       |  |  |  |  |
| ment                                           |      |                                                       |  |  |  |  |
| between rotor and stator                       |      |                                                       |  |  |  |  |
| without speed measuring system                 | mm   | ±3                                                    |  |  |  |  |
| with speed measuring system                    | mm   | ± 1.5                                                 |  |  |  |  |

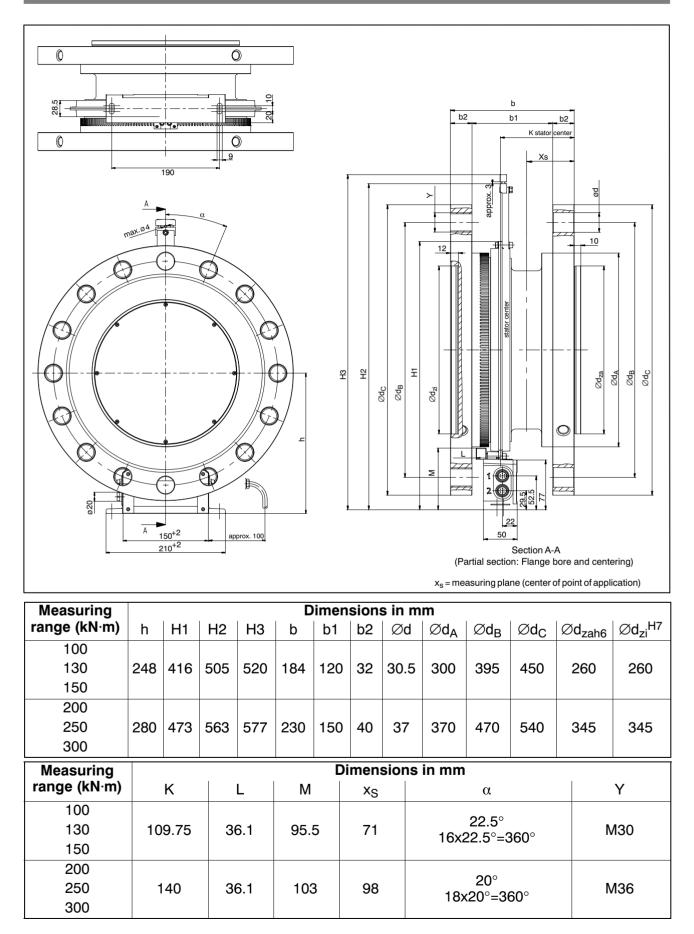
<sup>3)</sup> RS 422 complementary signals

| Туре                                                                                                                                                             | T10FH (non-rotating); option 2, code N |                                                                   |           |      |        |      |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------|-----------|------|--------|------|-----|
| Accuracy class                                                                                                                                                   | 0.1                                    |                                                                   |           |      |        |      |     |
| Torque measuring system                                                                                                                                          |                                        | 1                                                                 |           |      |        |      |     |
| Nominal (rated) torque M <sub>nom</sub>                                                                                                                          | kN⋅m                                   | 100                                                               | 130       | 150  | 200    | 250  | 300 |
| for reference only                                                                                                                                               | kft-lb                                 | 73.8 95.9 110.6 147.5 184.4                                       |           |      |        |      |     |
| Nominal (rated) sensitivity at<br>M <sub>nom</sub><br>(nominal (rated) signal range bet-<br>ween torque= zero and nominal<br>(rated) torque)                     | mV/V                                   | 1.1 1.9 (The sensitivity is specified on the identi cation plate) |           |      |        |      |     |
| <b>Sensitivity tolerance</b> (deviation<br>of the actual output value at M <sub>nom</sub><br>of nominal (rated) sensitivity)<br>in conjunction with HBM test re- |                                        |                                                                   |           |      |        |      |     |
| port<br>in conjunction with PTB calibra-<br>tion certificate per DIN 51309 or                                                                                    | %                                      | ±0.25 ±0.4                                                        |           |      |        |      |     |
| EA-10/14                                                                                                                                                         | %                                      |                                                                   | $\pm 0.1$ |      |        | ±0.1 |     |
| Temperature influence per 10 K<br>in the nominal temperature<br>range                                                                                            |                                        |                                                                   |           |      |        |      |     |
| on the output signal, related to the actual value of signal span                                                                                                 | %                                      |                                                                   |           | ±(   | D.1    |      |     |
| on the zero signal, related to the nom. sensitivity                                                                                                              | %                                      |                                                                   |           | ±0   | .05    |      |     |
| Linearity deviation including<br>hysteresis,<br>related to the nominal (rated) sen-<br>sitivity                                                                  | %                                      | ±0.1                                                              |           |      |        |      |     |
| <b>Rel. standard deviation of the</b><br><b>reproducibility,</b> per DIN 1319,<br>relative to variation of the output<br>signal                                  | %                                      | ±0.02                                                             |           |      |        |      |     |
| Input resistance at reference temperature                                                                                                                        | Ω                                      | 1550±100                                                          |           |      |        |      |     |
| Output resistance at reference temperature                                                                                                                       | Ω                                      |                                                                   |           | 1300 | . 1500 |      |     |
| Reference excitation voltage                                                                                                                                     | V                                      |                                                                   |           | 5    | 5      |      |     |
| Operating range of the excita-<br>tion voltage                                                                                                                   | V                                      | 2.5 12                                                            |           |      |        |      |     |
| Transducer identification                                                                                                                                        | _                                      | TEDS per IEEE 1451.4                                              |           |      |        |      |     |

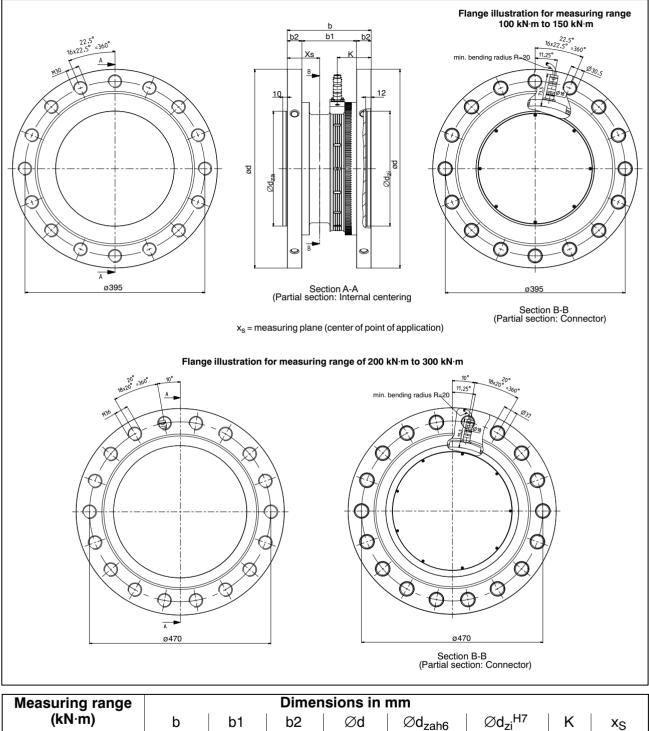
| General data                                                                        |                  |           |      |        |        |       |       |  |  |
|-------------------------------------------------------------------------------------|------------------|-----------|------|--------|--------|-------|-------|--|--|
| Nominal (rated) torque M <sub>nom</sub>                                             | kN⋅m             | 100       | 130  | 150    | 200    | 250   | 300   |  |  |
| for reference only                                                                  | kft-lb           | 73.8      | 95.9 | 110.6  | 147.5  | 184.4 | 221.3 |  |  |
| EMC                                                                                 |                  |           |      |        |        |       |       |  |  |
| <b>EME</b> (Emission per EN61326-1, table 4)                                        |                  |           |      |        |        |       |       |  |  |
| RFI field strength                                                                  | -                |           |      | Clas   | ss B   |       |       |  |  |
| Immunity from interference<br>(EN61326-1, table A.1)                                |                  |           |      |        |        |       |       |  |  |
| Electromagnetic field AM                                                            | V/m              |           |      | 1      | 0      |       |       |  |  |
| Magnetic field<br>ESD                                                               | A/m              |           |      | 3      | 0      |       |       |  |  |
| Contact discharge                                                                   | kV               |           |      | 4      | 1      |       |       |  |  |
| Air discharge                                                                       | kV               |           |      | 8      | 3      |       |       |  |  |
| Burst                                                                               | kV               |           |      | -      | 1      |       |       |  |  |
| Surge                                                                               | kV               | 1         |      |        |        |       |       |  |  |
| Line-conducted disturbance (AM)                                                     | V                | 3         |      |        |        |       |       |  |  |
| Degree of protection per<br>EN 60529                                                | -                |           |      | IP     | 54     |       |       |  |  |
| Nominal temperature range                                                           | °C [°F]          |           | +1   | 0+60 [ | +50+14 | 10]   |       |  |  |
| Reference temperature                                                               | °C [°F]          |           |      | +23 [  | 73.4]  |       |       |  |  |
| Service temperature range                                                           | °C [°F]          |           | +1   | 0+60 [ | +50+14 | 10]   |       |  |  |
| Storage temperature range                                                           | °C [°F]          |           | -2   | 20+70  | -4+15  | 8]    |       |  |  |
| Mechanical shock; test severity<br>level to DIN IEC 60068-2-27; IEC<br>68-2-29-1987 |                  |           |      |        |        |       |       |  |  |
| Number of impacts                                                                   | n                |           |      | 10     | 00     |       |       |  |  |
| Duration                                                                            | ms               |           |      | 3      | 3      |       |       |  |  |
| Acceleration                                                                        | m/s <sup>2</sup> | 650       |      |        |        |       |       |  |  |
| Vibrational stress; test severity<br>level to DIN IEC 60068-2-6;                    |                  |           |      |        |        |       |       |  |  |
| IEC 68-2-6-1982<br>Frequency range                                                  | Hz               | 5 65      |      |        |        |       |       |  |  |
| Duration                                                                            | ⊔ ⊓∠<br>h        | 1.5       |      |        |        |       |       |  |  |
| Acceleration                                                                        | m/s <sup>2</sup> | 50        |      |        |        |       |       |  |  |
| Nominal (rated) speed <sup>*)</sup>                                                 | rpm              | 3000 2000 |      |        |        |       |       |  |  |

\*) Only with option 2, code L

| Nominal (rated) torque M <sub>nom</sub>               | kN∙m   | 100         | 130  | 150   | 200   | 250   | 300   |  |
|-------------------------------------------------------|--------|-------------|------|-------|-------|-------|-------|--|
| for reference only                                    | kft-lb | 73.8        | 95.9 | 110.6 | 147.5 | 184.4 | 221.3 |  |
| Load limits <sup>4)</sup>                             |        |             |      |       |       |       |       |  |
| Limit torque                                          | kN⋅m   |             | 200  |       | 400   |       |       |  |
| Breaking torque                                       | kN⋅m   | > 300 > 600 |      |       |       | > 600 |       |  |
| Axial limit force                                     | kN     | 230         |      |       | 290   |       |       |  |
| Lateral force limit                                   | kN     |             | 110  |       |       | 240   |       |  |
| Bending limit moment                                  | kN⋅m   | 22 35       |      |       |       |       |       |  |
| Oscillation bandwidth per<br>DIN 50100 (peak-to-peak) | kN∙m   |             | 200  |       |       | 400   |       |  |
| upper maximum torque                                  | kN⋅m   |             | +150 |       | +300  |       |       |  |
| lower maximum torque                                  | kN⋅m   |             | -150 | -300  |       |       |       |  |

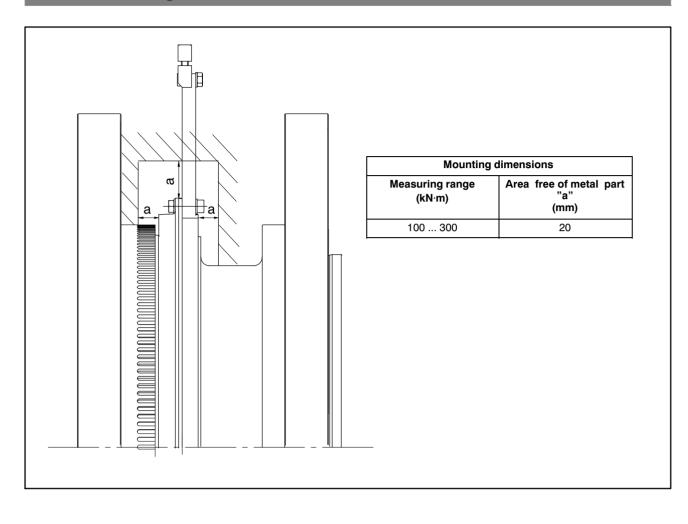

<sup>4)</sup> Each type of irregular stress can only be permitted with its given static load limit (bending moment, lateral or axial load, exceeding the nominal (rated) torque) if none of the others can occur. Otherwise the limit values must be reduced. If for instance 30 % of the bending limit moment and also 30 % of the lateral limit force are present, only 40 % of the axial limit force are permitted, provided that the nominal (rated) torque is not exceeded. With the permitted bending moments, axial, and lateral limit forces, measuring errors of about 1 % of the nominal (rated) torque can occur. If the nominal (rated) torque is exceeded, ensure that the maximum modulation range of the signal output electronics is being observed.

| Mechanical values                                                                                                                                              |               |                                                |                    |                               |                |           |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------|--------------------|-------------------------------|----------------|-----------|-------|
| Nominal (rated) torque M <sub>nom</sub>                                                                                                                        | kN⋅m          | 100                                            | 130                | 150                           | 200            | 250       | 300   |
| for reference only                                                                                                                                             | kft-lb        | 73.8 95.9 110.6                                |                    |                               | 147.5          | 184.4     | 221.3 |
| Torsional stiffness c <sub>T</sub>                                                                                                                             | kN·m/rad      |                                                | 84000              | 1                             |                | 169500    |       |
| Axial stiffness c <sub>a</sub>                                                                                                                                 | kN/mm         |                                                | 1250               |                               |                | 2850      |       |
| Radial stiffness c <sub>r</sub>                                                                                                                                | kN/mm         |                                                | 2500               |                               |                | 4300      |       |
| Stiffness with bending moment                                                                                                                                  |               |                                                |                    |                               |                |           |       |
| about a radial axis c <sub>b</sub>                                                                                                                             | kN·m/rad      |                                                | 17500              |                               |                | 49600     |       |
| Maximum deflection at axial limit force                                                                                                                        | mm            |                                                |                    | < (                           | ).5            |           |       |
| Additional max. concentricity<br>error at lateral limit force                                                                                                  | mm            |                                                |                    | < (                           | ).1            |           |       |
| Additional plane-parallel devi-<br>ation at bending limit moment                                                                                               | mm            |                                                |                    | <                             | 1              |           |       |
| Balance quality-level to DIN<br>ISO 1940 <sup>5)</sup>                                                                                                         |               |                                                |                    | Ge                            | 6.3            |           |       |
| Max. limits for relative shaft<br>vibration (peak-to-peak) <sup>5)6)</sup><br>Wave oscillations in the area of<br>the connection flanges acc. to<br>ISO 7919-3 |               |                                                |                    |                               |                |           |       |
| Normal mode (continuous opera-<br>tion)                                                                                                                        | μm            | $s_{(p-p)} = \frac{9000}{\sqrt{n}}$ (n in rpm) |                    |                               |                |           |       |
| Start and Stop mode/resonance ranges (temporary)                                                                                                               | μm            |                                                | s <sub>(p-p)</sub> | $r_0 = \frac{1320}{\sqrt{n}}$ | <u>0</u> (n in | rpm)      |       |
| Mass moment of inertia of the<br>rotor L <sub>v</sub><br>(about axis of rotation)                                                                              | kg⋅m²         |                                                | 2                  |                               |                | 5.2       |       |
| Proportional mass moment of inertia for                                                                                                                        |               |                                                |                    |                               |                |           |       |
| transmitter side, approx.                                                                                                                                      | %             |                                                | 55                 |                               |                | 53        |       |
| Weight, approx.<br>Rotor                                                                                                                                       | kg            |                                                | 84                 |                               |                | 148       |       |
| Stator <sup>5)</sup>                                                                                                                                           | kg            |                                                |                    | 1.                            | 4              |           |       |
| Supplementary information for o DIN 51309 or EA-10/14                                                                                                          | classificatio | on throu                                       | igh PTB            | calibrati                     | on certi       | ficate pe | r     |
| Class per DIN 51309<br>Rel. zero error (zero signal re-                                                                                                        |               | 0.5                                            |                    |                               |                |           |       |
| turn)                                                                                                                                                          | %             |                                                | $<\pm 0$           | ).125 (typ                    | oically <      | 0.05)     |       |
| Rel. spread (0.1 · M <sub>nom</sub> to M <sub>nom</sub> ) with                                                                                                 |               |                                                |                    |                               |                |           |       |
| unmodified mounting position                                                                                                                                   | %             |                                                | <0.                | 25 (typic                     | ally $< 0.$    | 125)      |       |
| with modified mounting position                                                                                                                                | %             |                                                | <0                 | 0.5 (typic                    | ally $< 0.2$   | 25)       |       |
| Relative reversibility error (0.1 $\cdot$ M <sub>nom</sub> to M <sub>nom</sub> )                                                                               | %             |                                                | <(                 | ).63 (typi                    | cally <0       | .5)       |       |


 $^{5)}$  Rotating; option 2, code L

 <sup>6)</sup> The impact of radial run-out deviations, eccentricity, defects of form, notches, marks, local residual magnetism, structural variations or material anomalies needs to be taken into account and isolated from the actual wave oscillation.

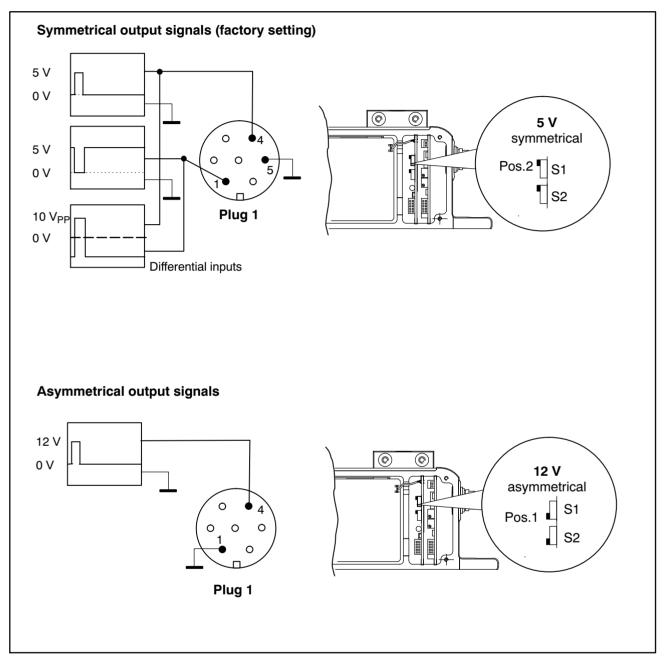
## 12 Dimensions Rotor T10FH rotating; option 2, code L



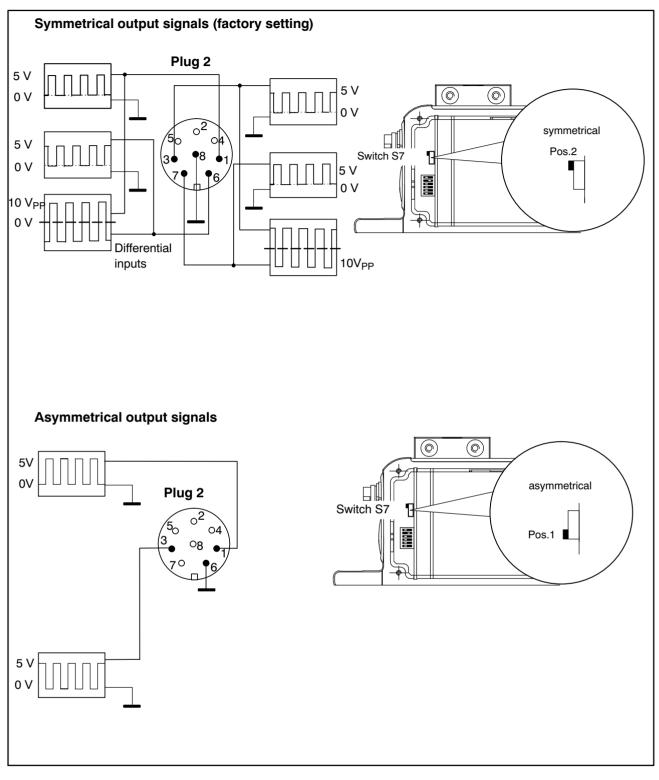

# 13 Dimensions Rotor T10FH non-rotating; option 2, code N

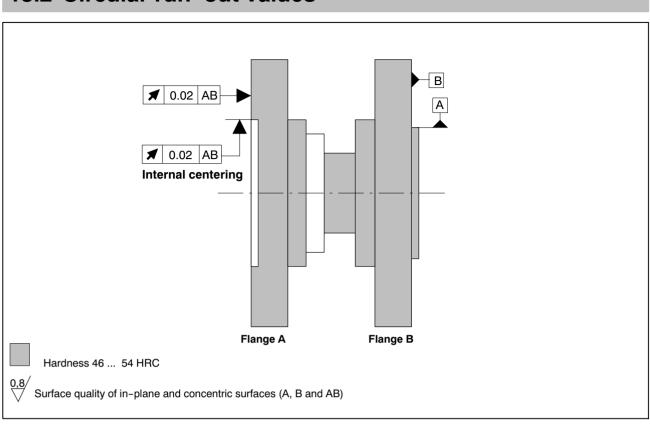


| Measuring range |     | Dimensions in mm |    |     |                      |                         |      |                |  |  |
|-----------------|-----|------------------|----|-----|----------------------|-------------------------|------|----------------|--|--|
| (kN·m)          | b   | b1               | b2 | Ød  | $\emptyset d_{zah6}$ | $\emptyset d_{zi}^{H7}$ | K    | x <sub>S</sub> |  |  |
| 100             |     |                  |    |     |                      |                         |      |                |  |  |
| 130             | 184 | 120              | 32 | 450 | 260                  | 260                     | 74.3 | 71             |  |  |
| 150             |     |                  |    |     |                      |                         |      |                |  |  |
| 200             |     |                  |    |     |                      |                         |      |                |  |  |
| 250             | 230 | 150              | 40 | 540 | 345                  | 345                     | 90   | 98             |  |  |
| 300             |     |                  |    |     |                      |                         |      |                |  |  |


# 14 Mounting Dimensions




# 15 Supplementary technical information; option 2, code L


# 15.1 Output signals

#### **15.1.1 Output MD for torque (connector 1)**









## 15.2 Circular run-out values

# 16 Order number

54

| Code   | Option  | 1: Measuring range up to                                                            | 7     |       |          |                                                              |
|--------|---------|-------------------------------------------------------------------------------------|-------|-------|----------|--------------------------------------------------------------|
| 100R   | 100 kN  | m                                                                                   | 1     |       |          |                                                              |
| 130R   | 130 kN  | m                                                                                   | 1     |       |          |                                                              |
| 150R   | 150 kN  | m                                                                                   |       |       |          |                                                              |
| 200R   | 200 kN  | m                                                                                   |       | Code  |          | tion 5: Rot. speed measuring system                          |
| 250R   | 250 kN  | m                                                                                   |       | 0     |          | hout rot. speed measuring system                             |
| 300R   | 300 kN  | m                                                                                   |       | 1     | With     | h rot. speed measuring system; 180 pulses/revolution         |
| Coc    | da Ont  | ion 2: Nominal speed                                                                | 7     |       |          |                                                              |
| N      |         | -rotating                                                                           | -     |       |          |                                                              |
|        |         | ninal speed depending on meas. range                                                | -     |       | ode      | Option 6: Customized modification No Customized modification |
|        |         | 0 rpm to 3000 rpm                                                                   |       |       | s        | No Customized modification                                   |
|        | Code    | Option 3: Electrical configuration                                                  | 7     |       |          |                                                              |
|        | PNJ     | Output signal mV/V,                                                                 | 1     |       |          |                                                              |
|        |         | depending on meas. range;                                                           |       |       |          |                                                              |
|        | 0110    | Nominal (rated) sensitivity 1.1 1.9 mV/V                                            | -     |       |          |                                                              |
|        | SU2     | Output signal 10 kHz $\pm$ 5 kHz and $\pm$ 10 V;<br>Supply voltage 18 30 V DC       |       |       |          |                                                              |
|        | Code    | Option 4: Accuracy                                                                  | 1     |       |          |                                                              |
|        | S       | Linearity deviation incl. hysteresis < 0.1;                                         | 1     |       |          |                                                              |
|        |         | Standard sensitivity tolerance*)                                                    |       |       |          |                                                              |
|        | K       | PTB calibration certificate per DIN 51309<br>or EA-10/14: class 0.5, clockwise- and |       |       |          |                                                              |
|        |         | counterclockwise torque;<br>sensitivity tolerance 0.1 %                             |       |       |          |                                                              |
|        | W       | PTB calibration certificate per DIN 51309<br>or EA-10/14: class 0.5, clockwise- and |       |       |          |                                                              |
|        |         | counterclockwise torque plus specification                                          |       |       |          |                                                              |
|        |         | of remanence value;                                                                 |       |       |          |                                                              |
|        |         | sensitivity tolerance 0.1 %                                                         |       |       |          |                                                              |
|        |         |                                                                                     |       |       |          |                                                              |
|        |         |                                                                                     |       |       |          |                                                              |
|        |         |                                                                                     |       |       |          |                                                              |
| L      |         |                                                                                     |       |       |          | *) Option 1, Code 100R 150R: 0.25 %                          |
| Order  | no.:    |                                                                                     |       |       |          | Option 1, Code 200R 300R: 0.4 %                              |
|        |         |                                                                                     | ─┐┌┴  |       |          | 1                                                            |
| _      |         | 0FH                                                                                 |       |       |          |                                                              |
| Orderi | ing exa | mple:                                                                               |       |       |          |                                                              |
|        | K-T1    | 0FH - 1 5 0 R - L - S U                                                             | 2 - 5 | S - O | - S      |                                                              |
|        |         |                                                                                     |       |       | <u> </u> |                                                              |

# 17 Accessories

| Item                                                                  | Order-No.       |
|-----------------------------------------------------------------------|-----------------|
| Ready made connecting cables                                          |                 |
| Torque (rotating); option 2, code L                                   |                 |
| Connecting cable torque, Binder 423 7-pole - D-Sub 15-pole, 6 m       | 1-KAB149-6      |
| Connecting cable torque, Binder 423 - free ends, 6 m                  | 1-KAB153-6      |
| Torque (non-rotating); option 2, code N                               |                 |
| Connecting cable torque, Binder 423 - free ends, 6 m                  | 1-KAB139A<br>-6 |
| Rotational speed                                                      |                 |
| Connecting cable rot. speed, Binder 423 8-pole - D-Sub 15-pole, 6 m   | 1-KAB150-6      |
| Connecting cable rot. speed, Binder 423 8-pole – free ends, 6 m       | 1-KAB154-6      |
| Male/female cable connectors                                          |                 |
| Torque                                                                |                 |
| 423G-7S cable socket, 7-pole, straight cable entry, for torque output | 3-3101.0247     |
| 423W–7S cable socket, 7-pole, 90° cable entry, for torque output      | 3-3312.0281     |
| Rotational speed                                                      | ·               |
| 423G-8S cable socket, 8-pole, straight cable entry, for speed output  | 3-3312.0120     |
| 423W-8S cable socket, 8-pole, 90° cable entry, for speed output       | 3-3312.0282     |
| Connecting cable, by the meter                                        |                 |
| Kab8/00-2/2/2                                                         | 4-3301.0071     |

Modifications reserved. All details describe our products in general form only. They are not to be understood as express warranty and do not constitute any liability whatsoever.

> **HBM** measurement with confidence

7-2002.2037

托驰 (上海) 工业传感器有限公司 上海市嘉定区华江路348号1号楼707室 电话: +86 021 51069888 传真: +86 021 51069009 邮箱: zhang@yanatoo.com 网址: www.sensor-hbm.com

A2037-4.0 en